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Numerical method for integrodifferential generalized Langevin and master equations
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Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 5 May 2003; published 12 August 2003!

We show that the integrodifferential generalized Langevin and non-Markovian master equations can be
transformed into larger sets of ordinary-differential equations. On the basis of this transformation we develop
a numerical method for solving such integrodifferential equations. Physically motivated example calculations
are performed to demonstrate the accuracy and convergence of the method.
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Generalized Langevin equations@1# and non-Markovian
master equations@2–4#, which arise in the treatment of sys
tems interacting with environmental degrees of freedom,
ten have an integrodifferential form. Unlike ordinar
differential equations that can be readily solved using Run
Kutta, predictor-corrector, and other well known numeric
schemes@5#, there are no general methods for solving eq
tions of integrodifferential type. Here, we show that the
integrodifferential equations can be converted to ordina
differential equations at the expense of introducing a n
time variable which is treated as if it is of spatial type.~Simi-
lar schemes are employed to numerically solve the Sc¨-
dinger equation for time-dependent Hamiltonians@6# and as
analytical tools@7#. There is also some resemblance to t
schemes for solving the integrodifferential equations of v
coelasticity@8#.! We then develop a numerical method bas
on this exact transformation and show that it can be use
accurately solve a variety of physically motivated exampl

Neglecting inhomogeneous terms resulting from noi
for simplicity, the generalized Langevin equations@1# for
positionq(t) and momentump(t) of a damped oscillator in
one dimension can be expressed in the form

dq~ t !/dt5p~ t !/m, ~1!

dp~ t !/dt52mv2q~ t !2E
2`

t

g~ t,t8!p~ t8!dt8, ~2!

wherem andv are the mass and frequency of the oscilla
and g(t,t8) is the memory function. Defining a spacelik
time variableu and a function

x~ t,u!5 f ~u!E
2`

t

g~ t1u,t8!p~ t8!dt8, ~3!

it can be verified by direct substitution thatp(t) andx(t,u)
satisfy the following ordinary-differential equations:

dp~ t !/dt52mv2q~ t !2x~ t,0!, ~4!

dx~ t,u!/dt5 f ~u!g~ t1u,t !p~ t !1
]x~ t,u!

]u

2
f 8~u!

f ~u!
x~ t,u!. ~5!
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Here, we have introduced a differentiable damping funct
f (u) @with f (0)51] which plays a useful role in the numer
cal scheme we will introduce to solve the ordinar
differential equations~1!, ~4!, and ~5!. @Note that f 8(u)
5d f(u)/du.#

Neglecting inhomogeneous terms, non-Markovian mas
equations@2–4# can be written in the form

dr~ t !/dt52 i @H~ t !,r~ t !#2E
2`

t

K~ t,t8!r~ t8!dt8, ~6!

where r(t) is the time-evolving reduced density matrix o
the subsystem,H(t) is an effective Hamiltonian, andK(t,t8)
is a memory operator.~We employ units such that\51.!
Defining an operator

x~ t,u!5 f ~u!E
2`

t

K~ t1u,t8!r~ t8!dt8, ~7!

it can be verified by direct substitution thatr(t) andx(t,u)
satisfy ordinary-differential equations

dr~ t !/dt52 i @H~ t !,r~ t !#2x~ t,0!, ~8!

dx~ t,u!/dt5 f ~u!K~ t1u,t !r~ t !1
]x~ t,u!

]u

2
f 8~u!

f ~u!
x~ t,u!. ~9!

Here f (u) is again a differentiable damping function suc
that f (0)51.

Thus, the integrodifferential Langevin equations~1! and
~2! can be expressed in the ordinary-differential forms~1!,
~4!, and ~5!, and the integrodifferential master equation~6!
can be expressed as the ordinary-differential equations~8!
and~9!. To exploit these transformed equations as a pract
numerical scheme, we must discretize theu variable on a
grid of points so that the number of ordinary-differenti
equations is finite. Once this is achieved, the ordina
differential equations can be solved using standard te
niques@5#. We use an eighth-order Runge-Kutta routine@10#
in our calculations.

To minimize the number of grid points, we choose
damping functionf (u) that decreases rapidly withu. In the
calculations reported here, we usedf (u)5e2gu2

. In practice,
©2003 The American Physical Society01-1
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fewer grid points are needed for positiveu than for negative
u, and we found that the pointsuj5(2n1 l 1 j )Du for j
51, . . . ,n worked well when we chosel 5 int(0.338n).
Here,un5 lDu is the largest positiveu value. While accurate
solutions can be obtained for almost any nonzero value og,
we found the most rapid convergence when values were
timized for the type of equation. Hence,g is specified differ-
ently below for each type of equation. To complete the n
merical method, we need a representation of the pa
derivative with respect tou on the grid. This could be per
formed via fast Fourier transform techniques@5#. We chose
instead to employ a matrix representation

S ]

]uD
j ,k

5
~21! j 2k

~ j 2k!Du
, ~10!

which is known as the sinc-DVR~discrete variable represen
tation! @9#. A DVR is a complete set of basis functions, a
sociated with a specific grid of points, in which functions
the variable are diagonal and derivatives have simple ma
representations@9#. DVRs are often used in multidimen
sional quantum mechanical scattering theory calculations@9#.
In the sinc-DVR@9#, which is associated with an equidis
tantly spaced grid on (2`,`), partial derivatives can thu
be evaluated with a sum

S ]X~ t,u!

]u D
u5uj

5 (
k51

n
~21! j 2k

~ j 2k!Du
X~ t,uk! ~11!

for any function or operatorX(t,u). In our calculations, we
choseDu to be equal to the time intervalDt between output
from the Runge-Kutta routine.

We now discuss the applications of the above numer
method to specific models. For the generalized Lange
equation, we chose an initial value problem@i.e., g(t,t8)
50 for t,t8 andg(t,t8)5W(t2t8) for t>t8], whereW(t)
has one of the following forms

W~ t !5e24t, ~12!

W~ t !5
1

9

e2t2e210t

12e2t
5

1

9 (
j 51

9

e2 j t , ~13!

W~ t !52e22t2e2t, ~14!

W~ t !53e22t22.8e2t10.8e2t/2, ~15!

which are displayed graphically in Fig. 1. The solid curve
given by ~12!, the dashed curve is given by Eq.~13!, the
short-dashed curve is given by Eq.~14! and the dotted curve
is given by Eq.~15!. These memory functions were chosen
roughly represent the various functional forms that can oc
physically @1# and for ease in obtaining exact solutions. T
constants appearing in Eqs.~1!, ~4!, and ~5! are chosen as
m51 andv2510. Figure 2 shows the functional form of th
exact solutionsq(t) ~solid curve! and p(t) ~dashed curve!,
which evolve from initial conditionsq(0)51 and p(0)
50.1, for memory function~12! over a time scale of 20 unit
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with Dt50.04. Solutions for the other memory function
~and the same initial conditions! are similar in appearance
These exact solutions were obtained by exploiting the f
that the above memory functions are sums of exponen
~i.e., W(t)5( j 51

` aje
2bj t) from which it follows that one

may write

dp~ t !/dt52mv2q~ t !2(
j 51

`

aje
2bj ty j~ t !, ~16!

dyj~ t !/dt5ebj tp~ t ! ~17!

for j 51,2, . . . , andsolve these ordinary-differential equa
tions using standard methods. This approach only works
memory functions of this type. Approximate solutions we
obtained usingg57/@(n2 l )Du#2. For negativeu, we set
W(u)5W(uuu).

The negative logarithm of the absolute error inq(t),

e~ t !52 log10uq~ t !2qapprox.~ t !u, ~18!

is shown in Fig. 3 plotted against time for the values ofn
indicated in the inset.@The error inp(t) is similar.# As n

FIG. 1. Memory functionsW(t) plotted against time.

FIG. 2. Position~solid curve! and momentum~dashed curve! of
a damped oscillator.
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increases,e increases~on average! and hence the error de
creases. The oscillations ine are caused by periodic interse
tions of the two solutions. In practice, it is impossible
visually distinguish the two solutions whene>2. Note that
after a short transient the error~on average! does not in-
crease. This is probably a consequence of the linearity
these equations. Some decline in accuracy with time sho
be expected when the Langevin equations are nonlinear~e.g.,
a particle in a double well!.

Figure 4 compares the exact solutions forq(t) ~solid
curve! and p(t) ~short-dashed curve! with those obtained
using our method forn5150 ~dashed and dotted curves, r
spectively! over a time of 40 units. No disagreement is v
ible. Convergence for memory function~13! is similar.

Memory functions~14! and~15! that take negative value
and have long time tails require many grid points for conv
gence. Figure 5 shows the negative logarithm~base 10! of
the absolute error inq(t) for this case. While many grid
points are required, high accuracy solutions can clearly
obtained using our method.

For the master equation, we chose an initial value pr
lem consisting of a dissipative two-level system represen
a spin interacting with environmental degrees of freedom

FIG. 3. e(t) for memory function~12!.

FIG. 4. Comparison of exact and approximate position and m
mentum of a damped oscillator.
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the spin Hamiltonian isH5(v/2)sz1bsx and the coupling
to the environment is proportional tosx , then the equation
for the density matrixr(t) is of the form@3,4#

dr~ t !

dt
52 i Fv2 sz1bsx ,r~ t !G2CE

0

t

W~ t2t8!$sx
2r~ t8!

1r~ t8!sx
222sxr~ t8!sx% dt8, ~19!

where thes ’s denote Pauli matrices. Parameters were se
v515b and C50.2. We chose to definex(t,u)5*0

t W(t
2t8)r(t8)dt8, which differs somewhat from the gener
definition employed in Eq.~7!. The transformed equation
are then

dr~ t !

dt
52 i Fv2 sz1bsx ,r~ t !G22C$x~ t,0!2sxx~ t,0!sx%,

~20!

dx~ t,u!

dt
5e2gu2

W~u!r~ t !1
]x~ t,u!

]u
12gu x~ t,u!.

~21!

Theory predicts that the memory functionW(t) for this prob-
lem is approximately Gaussian in form@4#. However, we
were unable to obtain an exact solution of the master eq
tion for this case@11#. Instead we approximate the Gaussi
via the similar functionW(t)514e27.4t213e28t. Exact so-
lutions for

^sz&~ t !5Tr$szr~ t !%5r11~ t !2r00~ t ! ~solid curve!,
~22!

^sx&~ t !5Tr$sxr~ t !%5r10~ t !1r01~ t ! ~dashed curve!,
~23!

^sy&~ t !5Tr$syr~ t !%

5 i ~r10~ t !2r01~ t !! ~short-dashed curve!,

~24!

and initial conditions ^sz&(0)51 and ^sx&(0)50
5^sy&(0) were obtained in the same way as for the gen
-

FIG. 5. e(t) for memory function~14!.
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alized Langevin equations and are plotted versus time in
6. For the approximate method we usedg511/@(n
2 l )Du#2, and for negativeu, we setW(u)5W(uuu). From
Fig. 7, where we plot

e~ t !52 log10u^sz&~ t !2^sz&approx.~ t !u ~25!

against time, we see that convergence of the numer
method is very rapid for these equations.~Similar accuracies
are achieved for̂sx& and ^sy&.!

Thus, we have shown that accurate solutions of integ
differential equations can be obtained via transformation

FIG. 6. Spinx ~solid curve!, y ~dashed curve!, and z ~short-
dashed curve! components.
et

n-
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larger set of ordinary-differential equations. Because t
transformation is exact, we expect that the method will a
work for equations not considered in this paper. It should
possible to obtain accurate solutions for such equations
the following steps. First, find an approximation of th
memory function or operator that will allow exact solution
to be obtained. Second, optimize the numerical method
finding the bestg for the model equations. Finally, apply th
numerical method to the original equations and look for co
vergence of the solutions with increasingn.
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FIG. 7. e(t) for ^sz&.
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